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FUNCTIONAL IDENTIFICATION OF THE NONLINEAR
THERMAL-CONDUCTIVITY COEFFICIENT BY GRADIENT
METHODS. I. CONJUGATE OPERATORS
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Consideration is given to the gradient methods of solution of the inverse heat-conduction problem on determi-
nation of the nonlinear coefficient λ(T) without its preliminary finite-dimensional approximation.

Introduction. Gradient methods of numerical solution of inverse heat-conduction problems have been devel-
oped in many works, mainly in [1–3]. In particular, the problem of identification of the nonlinear thermal-conductivity
coefficient λ(T) has been considered in [3–6]. In [1–3, 7, 8], gradient methods have been used for restoration and
evaluation of the power of heat sources.

One problem frequently arising when gradient methods are used is numerical realization of the values of con-
jugate (adjoint) operators. For example, in the case of identification of λ(T), the operator conjugate to the internal-su-
perposition operator (other names [9]: the substitution operator, the weighted-shift operator, the operator of replacement
of a variable, and the composite operator) is present in the scheme of the method of conjugate gradients. The well-
known approach presented in [3] leads to a complex and difficult-to-control procedure of computation of the values of
the operator conjugate to the internal-superposition operator. Therefore, a finite-dimensional approximation of the
sought nonlinear coefficients by any system of basis functions has been used in [3] and in subsequent works, thus re-
ducing inverse heat-conduction problems to a problem of restoration of a finite number of parameters. In this connec-
tion, such approaches to solution of inverse heat-conduction problems are frequently called parametric ones.

In the present work, we consider heat-conduction problems without preliminary approximation of the functions
sought. Such an approach is conventionally called functional (or finite-dimensional) identification. Functional identifi-
cation of the nonlinear thermal-conductivity coefficient by gradient methods is based on new representations of the op-
erator conjugate to the internal-superposition operator; these representations enable one to obtain formulas of the values
of a conjugate operator, which are convenient for numerical calculations. We note that similar representations were
used earlier in the theory of controlled integro-differential and functional-differential systems [10–12].

The results of the work are presented in two papers. In the first paper, we describe the algorithm of func-
tional identification of the coefficient λ(T); the emphasis is on finding the gradient of the square of the residual func-
tional for λ(T) in the space L2[T(1), T(2)] of functions summable with the square and in the Sobolev space
W2[T(1), T(2)] of absolutely continuous functions. In the second paper, we consider numerical realization of the algo-
rithm and discuss results of the numerical experiment on restoration of λ(T).

Scheme of Gradient Methods. Following mainly [1–5], we give formal schemes of the method of conjugate
gradients and the method of quickest descent which are used for solution of inverse problems of mathematical physics.
We note that rigorous substantiation of the gradient methods of solution of different classes of inverse heat-conduction
problems can be found in [3].

Let the system of operator equations

F (T, λ) = 0 , (1)
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y = L (T) , (2)

where T and λ are the sought quantities (T 2 X, λ 2 Λ, X and Λ are the Hilbert spaces), be prescribed. In the general
case, the nonlinear equation (1) represents the primal problem for the variable T. The inverse problem is in determin-
ing the input λ data for the primal problem from the output y data, which may be considered as a result of certain
measurements of the variable T. The measurement method is modeled by the continuous operator L: X → Y acting
from the Hilbert space X into the Hilbert space Y. In applications, the operator L is linear, as a rule, which will be
assumed in what follows.

The primal problem (1) satisfies the Hadamard correctness conditions and consequently is solvable for T (T =
ϕ(λ)). Based on this fact and on (2), we have the following equation for λ:

L (ϕ (λ)) B A (λ) = y . (3)

Next we assume that Eq. (3) is uniquely solvable for λ 2 G in a certain open domain G µ Λ. Variational
methods of solution of Eq. (3) are based on minimization of the square of the residual functional

J (λ) = 
1
2

 NA (λ) − yNY
2
 B 

1
2

 sA (λ) − y, A (λ) − ytY , (4)

where N⋅NY and s⋅,⋅tY are respectively the norm and the scalar product in the space Y.
Next we use the formula for computation of the gradient Jλn

 ′  of the functional (4) at the point λn, where n is
the No. of iteration of the algorithm. Let the operator A be differentiable according to Frechet in the domain G. The
theorem on the derivative of a composition of mappings yields (see also [2, 3])

Jλn

 ′  = 

Aλn

 ′ 



∗
 pn ,   pn := yn − y ,   yn := A (λn) . (5)

Here Aλn
 ′  is the Frechet derivative of the operator A at the point λn and (Aλn

 ′ )∗ is the operator conjugate to Aλn
 ′ . The

action of the operator (Aλn
 ′ )∗ on the element w 2 Y is determined by the equality

sAλn

 ′ u, wtY = su, 

Aλn

 ′ 



∗
 wtΛ ,   8u 2 Λ . (6)

For one variant of the conjugate-gradient method we write the following recurrence system [3, 13]:

λn+1 = λn − βnln ,   ln = Jλn

 ′  − γn−1ln−1 ,   l0 = Jλ0

 ′  , (7)

where λ0 is the initial approximation of the sought quantity λ. The parameter γn−1 is prescribed by one equality [13]:

γn−1 = − 
NJλn

 ′
NΛ

2

NJλn−1

 ′
NΛ

2
 ,   γn−1 = − 

sJλn

 ′ , Jλn−1

 ′  − Jλn

 ′
tΛ

NJλn−1

 ′
NΛ

2
 .

The descent parameter βn is determined by the condition

J (λn − βnln) = min
β>0

 J (λn − βln) . (8)

Setting γn−1 = 0 in (7), we obtain the recurrence system from the method of quickest descent [3].
From the theoretical and experimental results [1–8, 14] it follows that the gradient algorithms applied to a

number of inverse heat-conduction problems (including the inverse problems of restoration of thermophysical parame-
ters) possess regularizing properties. The iteration No. may act as the regularization parameter, whereas the residual
criterion should be used to halt the algorithm [2, 3].
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For computation of the operator (Aλn
 ′ )∗ it is convenient to use the initial system (1) and (2). Setting λ =

λn + u and T = Tn + ν (u and ν are the variations of the variables λ and T) and allowing for the equality F(Tn, λn) =
0, we represent Eq. (1) in the form

F(Tn,λn)
 ′  (ν, u) + α (ν, u) = 0 .

Here F ′(Tn, λn) is the Frechet derivative at the point (Tn, λn) of the mapping F : X × Λ → Z (Z is the Hilbert space of
F values, Nα(ν, u)NZ = oN(ν, u)NX×Λ). In so doing, we assume that the mapping F is differentiable at the point
(Tn, λn) according to Frechet. Since F ′(Tn, λn) is a linear operator, we may write it in the form F ′(Tn, λn)  =
(Mn, −Kn), where Mn : X → Z and Kn : ∆ → Z are the linear bounded operators representing partial derivatives with re-
spect to T and λ respectively at the point (Tn, λn) of the operator F. By virtue of the theorem on the derivative of an
explicitly prescribed mapping, we have Aλn

 ′  = LMn
−1Kn. It immediately follows that the conjugate operator (Aλn

 ′ )∗ allows
the representation




Aλn

 ′ 



∗
 = Kn

∗
 (Mn

∗)−1
 L

∗
 . (9)

Also, it may be stated that the value zn = (Aλn
 ′ )∗pn of the operator (Aλn

 ′ )∗ on the element pn is determined by
the problem

Mn
∗
w − L

∗
pn = 0 ,   zn = Kn

∗
w , (10)

conjugate to the problem

Mnν − Knu = 0 ,   y~ = Lν (11)

for the variations ν and n of the variables T and λ at the point (Tn, λn).
In solving inverse problems by the conjugate-gradient method, certain difficulties may arise in computation of

the parameter βn according to condition (8). The following technique, which has shown a good performance in solving
different classes of inverse heat-conduction problems for approximate computation of the quantity βn, is proposed in
[1–3]. Based on the approximation, A (λn − βln) C A (λn) − βLν(ln), β C 0, where ν(ln) = Mn

−1Knln is the solution of
problem (11) for u = ln, we obtain

J (λn − βln) C 
1
2

 N pn − βLν (ln)NY
2
 = 

1
2

 NpnNY
2
 − 2β sLν (ln), pnt + β2

 NLν (ln)N
2
 . (12)

The condition of steadiness in β of the approximation (given in (12)) of the functional J (λn − βln) yields the
estimate for βn:

βn C 
sLν (ln), pntY

NLν (ln)NY
2  . (13)

There can be other approaches for computation of the quantity βn which are based on the methods of mini-
mization of the single-variable function [13, 14].

Noteworthy is another property of invariance of formula (9) with respect to the replacement of the space X
by the arbitrary space X

~
 in the case of dense nesting of X into X

~
. This means that Mn and L may be considered as

unbounded operators in the space X
~

, i.e., the domains of definition and the values on identical elements for the opera-
tors Mn : X → Z and Pn = MnO−1 : X

~
 → Z (O is the operator of nesting [15] of X into X

~
) coincide, which also holds

for the pair of operators L : X → Y and Q = LO−1 : X
~

 → Y. To prove the above property of invariance we note that
Mn = PnO and L = QO; therefore, we have




Aλn

 ′ 



∗
 = (QO (PnO)−1

 Kn)
∗
 = Kn

∗
 (Pn

∗)−1
 (O∗)−1

 O
∗
Q = Kn

∗
 (Pn

∗)−1
 Q

∗
 .
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Consequently, we may use formula (9), assuming that Mn and L have been determined in the space X
~

, and,
in accordance with this, may compute the conjugate operators Mn

∗ and L∗. This circumstance is important for applica-
tions, since expressions for the conjugate operators Mn and L in such an interpretation are more convenient as a rule.
For inverse heat-conduction problems we usually have X

~
 = Z, where Z is the appropriate space for the set of values

of the operator F.
Gradient of the Residual Squared. We consider the problem of determination of the thermal-conductivity

coefficient λ(T) in the following formulation [3, 4]:

c (T) ∂T

∂t
 = 

∂
∂x

 



λ (T) 

∂T

∂x




 ,

T (x, 0) = T0 (x) ,   T (0, t) = g1 (t) ,  T (b, t) = g2 (t) ,

y (t) = T (x∗, t) .

(14)

Here (x, t) 2 Ω = [0, b] × [0, tf]; g1(t), g2(t), and y(t) are the prescribed functions. The point x∗ lies within the seg-
ment [0, b]. Also, we assume the fulfillment of the conditions of sufficient smoothness of the coefficients c and λ and
mating of the initial and boundary conditions [3].

The operator A corresponding to the system of equations (14) may be considered as the operator acting from

either L2[T(1), T(2)] into L2[0, tf] or from the Sobolev space W2
k[T(1), T(2)] into L2[0, tf] (T(1) =    min

(x,t)2∂Ω
 T(x, t) and

T(2) =    max
(x,t)2∂Ω

 T(x, t), ∂Ω is the boundary of the domain Ω). We consider both cases, setting k = 1 for simplification

in the second case, which corresponds to an absolute continuity of the function λ : [T(1), T(2)] → R and is natural from

the viewpoint of the physical formulation of the inverse problem.
We denote the solution of system (14) by Tn for λ(T) = λn(T). An equation of the form Mnν − Knu = 0 for

system (14) represents the initial boundary-value problem [3]:

∂

∂t
 (c (Tn) ν) − 

∂2

∂x
2 (λn (Tn) ν) − 

∂

∂x
 



u (Tn) 

∂Tn

∂x




 = 0 ,

ν (x, 0) = 0 ,   ν (0, t) = ν (b, t) = 0 .

(15)

Thus, the action of the operators Kni (i 2 0, 1

) (i = 0 corresponds to the first case and i = 1 corresponds to

the second case) is prescribed by the formula

(Kniu) (x, t) = 
∂
∂x

 



u (Tn) 

∂Tn

∂x




 ,

whereas the action of the operator Mn : W2,0
2,1(Ω) → L2(Ω) is prescribed by the formula

(Mnν) (x, t) = 
∂

∂t
 (c (Tn) ν) − 

∂2

∂x
2
 (λn (Tn) ν) . (16)

Here W2,0
2,1(Ω) is the Sobolev space of the functions ν satisfying the conditions ν, νx, νt, νxx 2 L2(Ω), ν(0, t) = ν(b, t)

= 0, and ν(x, 0) = 0.
Finally, the action of the operator L : W2,0

2,1(Ω) → L2[0, tf] is determined by the formula

(Lν) (t) = ν (x∗, t) B ∫ 
0

b

δ (x − x∗) ν (x, t) dx ,
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where δ(x − x∗) is the Dirac function.
The above-noted invariance of formula (9) with respect to the replacement of the space X by the space Z (in

this case X = W2,0
2,1(Ω) and Z = L2(Ω)) yields that we may consider Mn and L as unbounded operators in the space

L2(Ω) with the domain of definition W2,0
2,1(Ω). Hence, from (6) and (16), using the standard procedure based on the La-

grange formula, we obtain (see also [3]) a system of the form (10) for problem (14):

c (Tn) 
∂w

∂t
 + λn (Tn) 

∂2
w

∂x
2  − δ (x − x∗) pn (t) = 0 ,

w (x, tf) = 0 ,   w (0, t) = w (b, t) = 0 ,

zn = Kni
∗

w .

(17)

Here zn:= Jλn
 ′  is the gradient of the functional (4) at the point λn. Thus, the operator L∗ conjugate to L is prescribed

as (L∗pn)(x, t) = δ(x − x∗)pn(t). As far as the operators Kni
∗  (i = 0, 1

___
) are concerned, in [3–5], consideration is given to

the method of computation of Kn0
∗ , which is associated with the replacement of variables in a double integral. Since

this method involves certain difficulties in numerical realization of the algorithm, in [3] and in other works, use is
made of the finite-dimensional approximation

λ (T) C ∑ 

i=1

m

ciϕi (T) ,

where 


ϕi i = 1, m

____



 is the prescribed set of linearly independent basis functions and (c1, ..., cm) is the vector of the

coefficients sought. With such an approach, the initial infinite-dimensional problem is reduced to a finite-dimensional
one, which is, in principle, consistent with numerical reduction of infinite-dimensional problems and may work for im-
provement of the numerical stability of solution of inverse heat-conduction problems. At the same time, this reduction
has drawbacks due to the uncertainty in selection of both basis functions and the number of these functions, i.e., of
the parameter m characterizing the degree of approximation of the sought function λ(T). This problem may be solved
to some extent with the use of qualitative a priori information on the solution sought [3, 5]. We propose another ap-
proach to construction of the conjugate operator Kn0

∗ , which enables us to obtain quite an acceptable numerical scheme
of calculation of Kn0

∗  values. To do this will require the following statement:
Statement 1. For the arbitrary linear bounded operator S : L2(Ω) → L2(T(1), T(2)), we have the representation

(Sw) (z) = 
d
dz

 ∫ 
Ω

(S∗ χ) (z, x, τ) w (x, τ) dxdτ ,

where χ(z, s) = 




1   for   T(1) ≤ s ≤ z ,

0   for   z ≤ s ≤ T(2) ,
 χ is the characteristic function of the set 



(z, s)T(1) ≤ s ≤ z ≤ T(2)



, (S∗χ)(z, x, τ)

is the value at the point (x, τ) of action of the conjugate operator S∗ : L2(T(1), T(2)) → L2(Ω) on the function χ(z, ⋅) :

[T(1), T(2)] → 0, 1

.

The proof of this statement immediately follows from the chain of equalities

(Sw) (z) = 
d
dz

 ∫ 
T
(1)

z

(Sw) (τ) dτ = 
d
dz

  ∫ 
T
(1)

T
(2)

 χ (z, τ) (Sw) (τ) dτ = 
d
dz

 ∫ 
Ω

(S∗ χ) (z, x, τ) w (x, τ) dxdτ .

Proofs of the theorems given below are formed based on Statement 1.
Theorem 1. The (Kn0

∗ w)(z) values of the conjugate operator Kn0
∗  may be computed from any of the formulas
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(Kn0
∗

w) (z) = − 
d

dz
  ∫ 

0

b

 ∫ 
0

tf

 χ (z, Tn (x, t)) 
∂Tn (x, t)

∂x
 
∂w (x, t)

∂x
 dtdx B − 

d

dz
  ∫ 
ω(z)

 
∂Tn (x, t)

∂x
 
∂w (x, t)

∂x
 dxdt B

B − 
d

dz
 ∫ 
Ω

R (z, x, t) 
∂Tn (x, t)

∂x
 
∂w (x, t)

∂x
 dxdt , (18)

where ω(z) = 

(x, t) 2 ΩTn(x, t) ≤ z ≤ T(2)


 and R(z, x, t) is the characteristic function of the set w(z); the function

ω(x, t) satisfies the boundary conditions w(0, t) = w(b, t) = 0.
Proof. We note that the operator Kn0 represents the point of two operators, i.e., Kn0 = KdKn, where Kd =

∂
∂x

 is the differential operator and Kn is the generalized operator of internal superposition: (Knu)(x, t) = 
∂Tn(x, t)

∂x
u(Tn(x,

t)). Since Kn0
∗  = Kn

∗Kd
∗, applying Statement 1 to Kn

∗ and taking into account that (Kn
∗)* = Kn and (Kd

∗w)(x, t)  =

− 
∂w(x, t)

∂x
, w(0, t) = w(b, t) = 0, we obtain Theorem 1.

We pass to the construction of the conjugate operator Kn1
∗ . The operator Kn1

∗  acts from the space L2(Ω) into
W2

1[T(1), T(2)]. We may select the scalar product on the set of functions from W2
1[T(1), T(2)] by different methods, for

example, setting

sf, gtW2

1 =  ∫ 
T
(1)

T
(2)

 f (s) g (s) ds +  ∫ 
T
(1)

T
(2)

 
df
ds

 
dg
ds

 ds , (19)

or

sf, gtW2

1 = f (T(1)) g (T(1)) +  ∫ 
T
(1)

T
(2)

 
df
ds

 
dg
ds

 ds , (20)

or

sf, gtW2

1 = f (T(2)) g (T(2)) +  ∫ 
T
(1)

T
(2)

 
df
ds

 
dg
ds

 ds . (21)

The norms generated by (19)–(21) are equivalent. We dwell on formulas (20) and (21), since the expression
for the operator Kn1

∗  has the simplest form in this case.
Theorem 2. For the scalar product (20), the (Kn1

∗ w)(z) values of the conjugate operator Kn1
∗  may be computed

according to the formula

(Kn1
∗

w) (z) = − ∫ 
Ω

∂Tn (x, t)
∂x

 
∂w (x, t)

∂x
 dxdt −  ∫ 

T
(1)

z

 ∫ 
Ω

r (τ, x, t) 
∂Tn (x, t)

∂x
 
∂w (x, t)

∂x
 dxdtdτ , (22)

where r(τ, x, t) is the characteristic function of the set ω
__

(τ) = Ω\ω(τ) = 

(x, t) 2 ΩT(1) ≤ τ ≤ Tn(x, t)


.

Proof. Let us consider the case of the scalar product (20). Just as in proving Theorem 1, we 
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represent the operator Kn1 in the form of the product Kn1 = KdKna, where Kd = 
∂
∂x

, Kna : W2
1[T(1), T(2)] → L2(Ω), and

(Knau)(x, t) = u(Tn(x, t))
∂Tn(x, t)

∂x
. Since Kn1

∗  = Kna
∗ Kd

∗, to compute the operator Kn1
∗  we must only obtain expressions

for Kna
∗ . For the description of Kna

∗  we note that Kna may be represented as the loaded integro-differential operator

(Knau) (x, t) = Tn (x, t) 









u (T(1)) +   ∫ 

T
(1)

Tn(x, t)

  
du (τ)

dτ
 dτ










 B Tn (x, t) u (T(1)) +  ∫ 

T
(1)

T
(2)

 k (s, x, t) 
du (s)

ds
 ds , (23)

where k(s, x, t) = Tn(x, t)r(s, x, t). Using for (23) the determination (6) of the conjugate operator and the scalar prod-
uct (20), we obtain

 ∫ 
Ω

(Knau) (x, t) w(x, t) dxdt = u (T(1)) ∫ 
Ω

∂Tn (x, t)
∂x

 w (x, t) dxdt +  ∫ 
T
(1)

T
(2)

  
du (s)

ds
 ∫ 
Ω

k (s, x, t) w (x, t) dxdtds =

= u (T(1) ∫ 
Ω

∂Tn (x, t)
∂x

 w (x, t) dxdt +   ∫ 
T
(1)

T
(2)

  
du (s)

ds
 

d

ds
 









  ∫ 
T
(1)

s

 



 ∫ 
Ω

k (τ, x, t) w (x, t) dxdt



 dτ









 ds =

= u (T(1)) (Kna
∗

w) (T(1)) +   ∫ 
T
(1)

T
(2)

 
du (s)

ds
 

d
ds

 (Kna
∗

w) (s) ds .

This yields the representation (22) for the conjugate operator Kn1
∗ .

Theorem 3. For the scalar product (21), the (Kn1
∗ w)(z) values of the conjugate operator Kn1

∗  may be computed
according to the formula

(Kn1
∗

w) (z) = − ∫ 
Ω

∂Tn (x, t)
∂x

 
∂w (x, t)

∂x
 dxdt −  ∫ 

z

T
(2)

 ∫ 
Ω

R (τ, x, t) 
∂Tn (x, t)

∂x
 
∂w (x, t)

∂x
 dxdtdτ . (24)

The proof of Theorem 3 is carried out analogously to the proof of Theorem 2.
Corollary 1. We introduce the notation

 sn = ∫ 
Ω

∂Tn (x, t)
∂x

 
∂wn (x, t)

∂x
 dxdt ,   ln1 (z) = ∫ 

Ω

r (z, x, t) 
∂Tn (x, t)

∂x
 
∂wn (x, t)

∂x
 dxdt ,

ln2 (z) = ∫ 
Ω

R (z, x, t) 
∂Tn (x, t)

∂x
 
∂wn (x, t)

∂x
 dxdt .

Then, for the square norm of the gradient Jλn
 ′  in the space W2

1[T(1), T(2)], we may write the formula (i = 1 corresponds
to the scalar product (20) and i = 2 corresponds to the product (21))

NJλn

 ′
N

W2

1
2

 = sJλn

 ′ , Jλn

 ′
t = sn

2
 +   ∫ 

T
(1)

T
(2)

  lni
2

 (z) dz ,   i 2 1, 2

 .
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Dependences (18), (22), and (24) determining the conjugate operator Kn
∗ in the spaces L2[T(1), T(2)] and

W2[T(1), T(2)] may directly be used in numerical realization of the gradient methods for solution of inverse heat-con-
duction problems.

Conclusions. Within the framework of the theory of gradient methods, we have obtained algorithms of func-
tional (without preliminary finite-dimensional approximation of λ(T)) identification of the nonlinear thermal-conductiv-
ity coefficient using new representations of the conjugate operators.

NOTATION

b, length of the segment, m; c(T), heat-capacity coefficient, W⋅h/(m3⋅oC); Jλn
 ′ , gradient of the functional; G,

open domain; t, running instant of time, h; tf, final instant of time, h; T, temperature, oC; x, space coordinate, m; x∗,
point of measurement of the temperature, m; X, Y, and X

~
, Hilbert spaces; βn, descent coefficient; λ(T), thermal-con-

ductivity coefficient, W/(m⋅oC); Ω, domain of definition. Subscripts: f, final; n, iteration No. of the algorithm.
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